Gracias.....

Te damos la bienvenida por visitar nuestra página, ya que deseas informarte mucho mas a fondo con éste tema que resulta ser el más utilizado en nuestro diario vivir. sin mas preámbulos, BIENVENIDOS A "LA SOLDADURA MIG MAG"

HISTORIA

La soldadura es un proceso de fabricación en donde se realiza la unión de dos materiales, (generalmente metales o termoplásticos), usualmente logrado a través de la coalescencia (fusión), en la cual las piezas son soldadas fundiendo ambas y agregando un material de relleno fundido (metal o plástico), el cual tiene un punto de fusión menor al de la pieza a soldar, para conseguir un baño de material fundido (el baño de soldadura) que, al enfriarse, se convierte en una unión fija. A veces la presión es usada conjuntamente con el calor, o por sí misma, para producir la soldadura. Esto está en contraste con la soldadura blanda (en inglés soldering) y la soldadura fuerte (en inglés brazing), que implican el derretimiento de un material de bajo punto de fusión entre piezas de trabajo para formar un enlace entre ellos, sin fundir las piezas de trabajo.

Muchas fuentes de energía diferentes pueden ser usadas para la soldadura, incluyendo una llama de gas, un arco eléctrico, un láser, un rayo de electrones, procesos de fricción o ultrasonido. La energía necesaria para formar la unión entre dos piezas de metal generalmente proviene de un arco eléctrico. La energía para soldaduras de fusión o termoplásticos generalmente proviene del contacto directo con una herramienta o un gas caliente.

Mientras que con frecuencia es un proceso industrial, la soldadura puede ser hecha en muchos ambientes diferentes, incluyendo al aire libre, debajo del agua y en el espacio. Sin importar la localización, sin embargo, la soldadura sigue siendo peligrosa, y se deben tomar precauciones para evitar quemaduras, descarga eléctrica, humos venenosos, y la sobreexposición a la luz ultravioleta.

Hasta el final del siglo XIX, el único proceso de soldadura era la soldadura de fragua, que los herreros han usado por siglos para juntar metales calentándolos y golpeándolos. La soldadura por arco y la soldadura a gas estaban entre los primeros procesos en desarrollarse tardíamente en el siglo, siguiendo poco después la soldadura por resistencia. La tecnología de la soldadura avanzó rápidamente durante el principio del siglo XX mientras que la Primera Guerra Mundial y la Segunda Guerra Mundial condujeron la demanda de métodos de junta confiables y baratos. Después de las guerras, fueron desarrolladas varias técnicas modernas de soldadura, incluyendo métodos manuales como la Soldadura manual de metal por arco, ahora uno de los más populares métodos de soldadura, así como procesos semiautomáticos y automáticos tales como Soldadura GMAW, soldadura de arco sumergido, soldadura de arco con núcleo de fundente y soldadura por electro escoria. Los progresos continuaron con la invención de la soldadura por rayo láser y la soldadura con rayo de electrones a mediados del siglo XX. Hoy en día, la ciencia continúa avanzando. La soldadura robotizada está llegando a ser más corriente en las instalaciones industriales, y los investigadores continúan desarrollando nuevos métodos de soldadura y ganando mayor comprensión de la calidad y las propiedades de la soldadura.

Se dice que es un sistema porque intervienen los elementos propios de este, es decir, las 5 M: mano de obra, materiales, máquinas, medio ambiente y medios escritos (procedimientos). La unión satisfactoria implica que debe pasar las pruebas mecánicas (tensión y doblez). Las técnicas son los diferentes procesos (SMAW, SAW, GTAW, etc.) utilizados para la situación más conveniente y favorable, lo que hace que sea lo más económico, sin dejar de lado la seguridad


3. CONSTITUCIÓN DE UN EQUIPO DE SOLDADURA MIG/MAG.
Se indican a continuación los elementos más importantes que forman parte de un equipo de soldadura MIG/MAG.
3.1. TRANSFORMADOR.
El transformador es el elemento encargado de reducir la tensión alterna proveniente de red en otra que la haga apta para la soldadura, siguiendo una serie de condiciones eléctricas que se detallarán en apartados sucesivos.
Fundamentalmente, un transformador consta de un núcleo formado por chapas magnéticas apiladas en cuyas columnas se devanan dos bobinas. La primera de ellas, que va a constituir el circuito primario consta de un número de espiras superior a la segunda, y, además, de sección inferior a ésta. La segunda, por consiguiente, que constituye el circuito secundario, tendrá menos espiras y de mayor sección.
En la siguiente figura se muestra la constitución básica de un transformador monofásico. Conviene tener en cuenta que si el transformador es trifásico, son tres los pares de bobinas que se hallarán presentes:

El principio de funcionamiento es el siguiente: cuando circula una corriente alterna por el circuito primario, se forma un flujo magnético que circula por el interior del núcleo formado, recuérdese, por chapas magnéticas, con el objetivo de favorecer precisamente este flujo.


El flujo magnético, a su vez, induce en el circuito secundario una tensión que es proporcional a la tensión aplicada al primario, con un coeficiente de proporcionalidad dado por el cociente entre el número de espiras secundarias y el número de espiras primarias, es decir:




Donde:
V1 : Tensión aplicada al primario
V2 : Tensión inducida en el secundario
N1 : Número de espiras primarias
N2 : Número de espiras secundarias
Es interesante tener en cuenta que los detalles de construcción de los transformadores pueden influir en gran medida sobre las características de soldadura.

3.2. RECTIFICADOR.
La misión de un rectificador es la de convertir la tensión alterna en continua, imprescindible para poder soldar en proceso MIG/MAG.
Está constituido por un número variable de semiconductores de potencia, concretamente de diodos de silicio, soportados en aletas de aluminio con objeto de aumentar su refrigeración.

3.3. INDUCTANCIA.
La inductancia tiene como objeto el alisamiento de la corriente de soldadura, lo que da como resultado una disminución de las proyecciones, o, lo que es lo mismo, una mayor estabilidad en la soldadura. Dado que la inductancia limita el crecimiento brusco de la intensidad cada vez que se produce un cortocircuito, durante el cebado del arco, y puesto que el hilo está frió, puede darse el caso de que la intensidad no sea suficiente para aportar la energía necesaria para fundir el hilo, lo que repercutiría en un deficiente cebado. Es por ello que si el equipo de soldadura consta de una inductancia de valor inductivo elevado, estará dotado también de algún sistema que elimine este efecto durante el instante inicial.
Fundamentalmente, la inductancia está formada por un núcleo en el que están arrolladas algunas espiras por las que circulará la corriente de soldadura.


3.4. UNIDAD ALIMENTADORA DE HILO.
Su misión consiste en proporcionar al hilo de soldadura la velocidad constante que precisa mediante un motor, generalmente de corriente continua.
La velocidad puede ser regulada por el operario mediante un botón accesible al exterior, desde valores que van de O a 25 m/min. En la mayoría de los equipos, la regulación de velocidad se consigue a través de un control electrónico.

El sistema de arrastre está formado por uno o dos rodillos de arrastre que trabajan contra otros rodillos de presión. Los rodillos de arrastre pueden estar moleteados o ranurados. Los moleteados facilitan el arrastre en gran medida, pero presentan el inconveniente de que arrancan al hilo partículas de cobre de su capa exterior, lo que puede provocar defectos de alimentación.

El cuidado y mantenimiento de los rodillos es muy importante, ya que determina la uniformidad de la velocidad de alimentación del hilo, y esta velocidad, controla, a su vez, la corriente de soldadura.

El rodillo de presión debe estar ajustado correctamente, ya que una presión excesiva podría producir deformaciones en el hilo, con las consiguientes dificultades en su alimentación y deslizamiento a través del tubo de contacto.

Una presión insuficiente originaria deslizamiento de los rodillos, lo que provocaría irregularidades en la velocidad de alimentación y, por tanto, fluctuaciones de corriente.

3.5. CIRCUITO DE GAS PROTECTOR.
El gas protector circula desde la bombona a la zona de soldadura a través de un conducto de gas y la propia antorcha de soldadura. A la salida de la botella debe incorporarse un manorreductor-caudalímetro que permita la regulación de gas para suministrar en todo momento el caudal adecuado a las condiciones de soldadura y a la vez, proporcionar una lectura directa de la presión del gas en la botella y del caudal que se está utilizando en la soldadura.
Una electroválvula accionada por un control electrónico, abre o cierra el paso del gas en el momento adecuado.
Según las condiciones de trabajo o exposición del mismo a corrientes de aire, deberá regularse la soldadura con un mayor o menor caudal de gas. Igualmente, debe tenerse en cuenta que cuanto mayor es la distancia entre buza y metal base, mayor deberá ser el caudal para garantizar la protección suficiente.
Cuando se utilicen gases con mezcla de argón, debe evitarse los caudales de gas elevados, puesto que de otra forma se corre el peligro de porosidad provocado por turbulencias en el propio gas. Como norma general debe utilizarse un caudal en litros minuto igual a diez veces el diámetro del hilo.

3.6. ANTORCHA DE SOLDADURA.
La antorcha de soldadura, y el conjunto de cables que a ella van unidos, conducen el hilo, la corriente de soldadura y el gas de protección a la zona del arco.
Para corrientes elevadas, generalmente superiores a 300 A, se utilizan antorchas refrigeradas por agua, y, por tanto, deben ir conectadas además a un sistema de refrigeración adicional.

Todo este conjunto de conductos forma la manguera de la antorcha, y va protegida por un tubo de goma. La pistola de la antorcha va provista de un pulsador para el mando a distancia del equipo.
En la punta de la pistola van acopladas una buza exterior que canaliza el gas a la zona de soldadura y una boquilla interior, denominada tubo de contacto, que proporciona el necesario contacto eléctrico a la punta del alambre para realizar el arco de soldadura.
El soldador guía el arco y controla la soldadura desde la empuñadura de la pistola. La distancia entre la punta final del tubo de contacto y el extremo del hilo es controlada por el operario ya que depende de la mayor o menor altura con que lleva la pistola, pero la longitud del arco propiamente dicha se controla automáticamente mediante la tensión a que está regulada la máquina y la velocidad del hilo.

3.7. CONTROL ELECTRÓNICO.
Cada vez son más los equipos que incorporan la tecnología de estado sólido para el control de velocidad y la secuencia de la máquina. Presentan la gran ventaja de garantizar una vida útil del equipo prácticamente ilimitada, en comparación con los elementos electromecánicos que por su constitución sufren de un gran desgaste.

3.8. CIRCUITO DE REFRIGERACION (OPCIONAL).
El circuito de refrigeración (cuando el equipo dispone de él), tiene como misión refrigerar la antorcha de soldadura.
Suele estar formado por un circuito cerrado de agua, parte del cual es la propia antorcha de soldadura. El agua es impulsada hasta la pistola por una electrobomba. A través del otro conducto de la antorcha el agua retorna a un radiador cuyo objeto es disipar la energía calorífica que el agua ha absorbido durante el recorrido por la antorcha. A la salida del radiador, el agua se almacena en un depósito, del cual se nutre la electrobomba.

3.9. FACTOR DE MARCHA.
Todo equipo está diseñado para suministrar una intensidad nominal de soldadura de forma continua. En el ensayo de calentamiento, la temperatura que alcanzan los distintos componentes del equipo debe estabilizarse al cabo de un tiempo de funcionamiento a la intensidad nominal, puesto que de lo contrario, los aislamientos o los semiconductores pueden presentar deterioros irreversibles.
Sin embargo, en soldadura, a excepción de instalaciones robotizadas, no es posible trabajar de forma continuada, ya que existen tiempos de preparación, cambios de hilo, y de botellas de gas, descanso del operario,... Es por ello, que cuando se habla de equipos de soldadura, es preciso especificar lo que se denomina factor de marcha.
Se llama FACTOR DE MARCHA al cociente entre el tiempo de soldadura y el tiempo total de duración del trabajo. En los tiempos de parada del equipo, tiene lugar su enfriamiento, lo que permite que la temperatura se estabilice dentro de una pequeña gama de valores, siempre inferior a la temperatura límite en el interior del equipo.